Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Proper time regularization at finite quark chemical potential

    https://doi.org/10.1142/S0217732316500863Cited by:19 (Source: Crossref)

    In this paper, we use the two-flavor Nambu–Jona-Lasinio (NJL) model to study the quantum chromodynamics (QCD) chiral phase transition. To deal with the ultraviolet (UV) issue, we adopt the popular proper time regularization (PTR), which is commonly used not only for hadron physics but also for the studies with magnetic fields. This regularization scheme can introduce the infrared (IR) cutoff to include quark confinement. We generalize the PTR to zero temperature and finite chemical potential case use a completely new method, and then study the chiral susceptibility, both in the chiral limit case and with finite current quark mass. The chiral phase transition is second-order in μ=0 and T=0 and crossover at μ0 and T=0. Three sets of parameters are used to make sure that the results do not depend on the parameter choice.

    PACS: 12.38.Lg, 12.38.Mh