Gravitationally decoupled non-static anisotropic spherical solutions
Abstract
This paper is devoted for the formulation of new anisotropic solutions for non-static spherically symmetric self-gravitating systems through gravitational decoupling technique. Initially, we add a gravitational source in the perfect matter distribution for inducing the effects of anisotropy in the considered model. We then decouple the field equations through minimal geometric deformation approach and derive three new anisotropic solutions. Among these, two anisotropic solutions are evaluated by applying specific constraints on anisotropic source and the third solution is obtained by employing the barotropic equation of state. The physical acceptability and stability of the anisotropic models are investigated through energy conditions and causality condition, respectively. We conclude that all the derived anisotropic solutions are physically viable as well as stable.