RENORMALIZATION GROUP FLOW EQUATIONS AND THE PHASE TRANSITION IN O(N)-MODELS
Abstract
We derive and solve numerically self-consistent flow equations for a general O(N)-symmetric effective potential without any polynomial truncation. The flow equations combined with a sort of a heat-kernel regularization are approximated in next-to-leading order of the derivative expansion. We investigate the method at finite temperature and study the nature of the phase transition in detail. Several beta functions, the Wilson–Fisher fixed point in three dimensions for various N are analyzed and various critical exponents β, ν, δ and η are independently calculated in order to emphasize the reliability of this novel approach.
You currently do not have access to the full text article. |
---|