Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

RENORMALIZATION GROUP FLOW EQUATIONS AND THE PHASE TRANSITION IN O(N)-MODELS

    https://doi.org/10.1142/S0217751X0100502XCited by:68 (Source: Crossref)

    We derive and solve numerically self-consistent flow equations for a general O(N)-symmetric effective potential without any polynomial truncation. The flow equations combined with a sort of a heat-kernel regularization are approximated in next-to-leading order of the derivative expansion. We investigate the method at finite temperature and study the nature of the phase transition in detail. Several beta functions, the Wilson–Fisher fixed point in three dimensions for various N are analyzed and various critical exponents β, ν, δ and η are independently calculated in order to emphasize the reliability of this novel approach.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!