World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANALYTICAL BETHE ANSATZ FOR OPEN SPIN CHAINS WITH SOLITON NONPRESERVING BOUNDARY CONDITIONS

    https://doi.org/10.1142/S0217751X06029077Cited by:12 (Source: Crossref)

    We present an "algebraic treatment" of the analytical Bethe ansatz for open spin chains with soliton nonpreserving (SNP) boundary conditions. For this purpose, we introduce abstract monodromy and transfer matrices which provide an algebraic framework for the analytical Bethe ansatz. It allows us to deal with a generic open SNP spin chain possessing on each site an arbitrary representation. As a result, we obtain the Bethe equations in their full generality. The classification of finite dimensional irreducible representations for the twisted Yangians are directly linked to the calculation of the transfer matrix eigenvalues.

    In memory of our friend Daniel Arnaudon

    PACS: 02.20.Uw, 03.65.Fd, 75.10.Pq
    You currently do not have access to the full text article.

    Recommend the journal to your library today!