World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THERMODYNAMIC GEOMETRY AND CRITICAL BEHAVIOR OF BLACK HOLES

    https://doi.org/10.1142/S0217751X07034064Cited by:165 (Source: Crossref)

    Based on the observations that there exists an analogy between the Reissner–Nordström–Anti-de Sitter (RN–AdS) black holes and the van der Waals–Maxwell liquid-gas system, in which a correspondence of variables is (ϕ,q) ↔ (V,P), we study the Ruppeiner geometry, defined as Hessian matrix of black hole entropy with respect to the internal energy (not the mass) of black hole and electric potential (angular velocity), for the RN, Kerr and RN–AdS black holes. It is found that the geometry is curved and the scalar curvature goes to negative infinity at the Davies' phase transition point for the RN and Kerr black holes. Our result for the RN–AdS black holes is also in good agreement with the one about phase transition and its critical behavior in the literature.

    PACS: 04.70.Dy, 04.65.+e, 05.40.-a
    You currently do not have access to the full text article.

    Recommend the journal to your library today!