World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THERMAL RADIATION OF VARIOUS GRAVITATIONAL BACKGROUNDS

    https://doi.org/10.1142/S0217751X07036130Cited by:121 (Source: Crossref)

    We present a simple and general procedure for calculating the thermal radiation coming from any stationary metric. The physical picture is that the radiation arises as the quasiclassical tunneling of particles through a gravitational barrier. We study three cases in detail: the linear accelerating observer (Unruh radiation), the nonrotating black hole (Hawking radiation), and the rotating/orbiting observer (circular Unruh radiation). For the linear accelerating observer we obtain a thermal spectrum with the usual Unruh temperature. For the nonrotating black hole we obtain a thermal spectrum, but with a temperature twice that given by the original Hawking calculations. We discuss possible reasons for the discrepancies in temperatures as given by the two different methods. For the rotating/orbiting case the quasiclassical tunneling approach indicates that there is no thermal radiation. This result for the rotating/orbiting case has experimental implications for the experimental detection of this effect via the polarization of particles in storage rings.

    PACS: 04.62.+v, 04.70.Dy, 03.65.Xp
    You currently do not have access to the full text article.

    Recommend the journal to your library today!