World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SIMULATIONS OF EXTENSIVE AIR SHOWERS FOR THE ESTIMATION OF THE NUMBER OF PHOTOELECTRONS OF A SETUP OF P. AUGER FLUORESCENCE DETECTOR

    https://doi.org/10.1142/S0217751X08038111Cited by:0 (Source: Crossref)

    The efficiency of a pixel detector using optical UV filters is determined in this work. Based on the Auger fluorescence detector geometry, we have calculated the overall efficiency of the pixel detector using an appropriate method that takes into account the particular spectral functions and the dependence on the angle of incidence of the optical filter used. Assuming extensive air shower (EAS) events developed with various inclinations generated by AIRES code, we calculated the number of electrons and positrons produced during the development of the EAS's. The detection efficiency of the pixel detector is taken into account in estimating the recorded signal (number of photoelectrons) for two sets of EAS simulations, corresponding to protons and iron nuclei, as primary particles.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!