World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON UNITARITY OF A LINEARIZED YANG–MILLS FORMULATION FOR MASSLESS AND MASSIVE GRAVITY WITH PROPAGATING TORSION

    https://doi.org/10.1142/S0217751X10050561Cited by:1 (Source: Crossref)

    A perturbative regime based on contortion as a dynamical variable and metric as a (classical) fixed background, is performed in the context of a pure Yang–Mills formulation for gravity in a (2+1)-dimensional space–time. In the massless case, we show that the theory contains three degrees of freedom and only one is a nonunitary mode. Next, we introduce quadratical terms dependent on torsion, which preserve parity and general covariance. The linearized version reproduces an analogue Hilbert–Einstein–Fierz–Pauli unitary massive theory plus three massless modes, two of them represents nonunitary ones. Finally, we confirm the existence of a family of unitary Yang–Mills-extended theories which are classically consistent with Einstein's solutions coming from nonmassive and topologically massive gravity. The unitarity of these Yang–Mills-extended theories is shown in a perturbative regime. A possible way to perform a nonperturbative study is remarked.

    PACS: 04.50.Kd, 04.20.Fy, 04.60.Rt
    You currently do not have access to the full text article.

    Recommend the journal to your library today!