World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CANONICAL TENSOR MODELS WITH LOCAL TIME

    https://doi.org/10.1142/S0217751X12500200Cited by:29 (Source: Crossref)

    It is an intriguing question how local time can be introduced in the emergent picture of space–time. In this paper, this problem is discussed in the context of tensor models. To consistently incorporate local time into tensor models, a rank-three tensor model with first class constraints in Hamilton formalism is presented. In the limit of usual continuous spaces, the algebra of constraints reproduces that of general relativity in Hamilton formalism. While the momentum constraints can be realized rather easily by the symmetry of the tensor models, the form of the Hamiltonian constraints is strongly limited by the condition of the closure of the whole constraint algebra. Thus the Hamiltonian constraints have been determined on the assumption that they are local and at most cubic in canonical variables. The form of the Hamiltonian constraints has similarity with the Hamiltonian in the c < 1 string field theory, but it seems impossible to realize such a constraint algebras in the framework of vector or matrix models. Instead these models are rather useful as matter theories coupled with the tensor model. In this sense, a three-index tensor is the minimum-rank dynamical variable necessary to describe gravity in terms of tensor models.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!