World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Survival of new physics: Anomaly-free neutral gauge boson at the LHC

    https://doi.org/10.1142/S0217751X14500468Cited by:0 (Source: Crossref)

    An anomaly-free U(1)′ effective Lagrangian as a benchmark of new physics beyond the standard model is proposed to survey the maximal parameter space constrained by the precise electroweak measurements at the Large Electron-Positron Collider (LEP) and direct detection of the dilepton decay channel at at the Large Hadron Collider (LHC). By the global fit of the effective couplings of the Z boson to the Standard Model fermions, parameters Δ11, Δ21 and g′′Δ31 related to mixings and r related to the U(1)′ charge assignment are bounded. The allowed areas are plotted not only in the r–g′′ plane, but also in the mZ′–g′′ plane. They show that a sub-TeV Z′ is still permissible as long as the coupling g′′ is of order ~0.01. The results hint at possible new physics beyond the standard model. A prediction of the possible signal for the dilepton decay channel at at LHC is also provided.

    PACS: 12.60.Cn, 14.70.Pw, 13.90.+i
    You currently do not have access to the full text article.

    Recommend the journal to your library today!