World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Self-interacting mass-dimension one fields for any spin

    https://doi.org/10.1142/S0217751X15500487Cited by:12 (Source: Crossref)

    According to Ahluwalia and Grumiller, massive spin-half fields of mass-dimension one can be constructed using the eigenspinors of the charge-conjugation operator (Elko) as expansion coefficients. In this paper, we generalize their result by constructing quantum fields from higher-spin Elko. The kinematics of these fields are thoroughly investigated. Starting with the field operators, their propagators and Hamiltonians are derived. These fields satisfy the higher-spin generalization of the Klein–Gordon but not the Dirac equation. Independent of the spin, they are all of mass-dimension one and are thus endowed with renormalizable self-interactions. These fields violate Lorentz symmetry. The violation can be characterized by a non-Lorentz-covariant term that appears in the Elko spin-sums. This term provides a decomposition of the generalized higher-spin Dirac operator in the momentum space thus suggesting a possible connection between the mass-dimension one fields and the Lorentz-invariant fields.

    PACS: 11.90.+t, 12.90.+b
    You currently do not have access to the full text article.

    Recommend the journal to your library today!