World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The fine tuning of the cosmological constant in a conformal model

    https://doi.org/10.1142/S0217751X15501717Cited by:6 (Source: Crossref)

    We consider a conformal model involving two real scalar fields in which the conformal symmetry is broken by a soft mechanism and is not anomalous. One of these scalar fields is representative of the standard model Higgs. The model predicts exactly zero cosmological constant. In the simplest version of the model, some of the couplings need to be fine-tuned to very small values. We formulate the problem of fine tuning of these couplings. We argue that the problem arises since we require a soft mechanism to break conformal symmetry. The symmetry breaking is possible only if the scalar fields do not evolve significantly over the time scale of the Universe. Ignoring contributions due to quantum gravity, we present two solutions to this fine tuning problem. We argue that the problem is solved if the classical value of one of the scalar fields is super-Planckian, i.e. takes a value much larger than the Planck mass. The second solution involves introduction of a strongly coupled hidden sector that we call hypercolor. In this case, the conformal invariance is broken dynamically and triggers the breakdown of the electroweak symmetry. We argue that our analysis applies also to the case of the standard model Higgs multiplet.

    PACS: 11.10.-z, 12.60.Fr, 98.80.-k, 95.36.+x
    You currently do not have access to the full text article.

    Recommend the journal to your library today!