World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Abelian spatial string tension in finite temperature SU(2) gauge theory

    https://doi.org/10.1142/S0217751X16501499Cited by:2 (Source: Crossref)

    We investigate Abelian and monopole contributions to spatial string tension in the deconfined phase of finite temperature SU(2) gauge theory without imposing any gauge fixing conditions. Lattice calculations of non-Abelian and Abelian spatial string tensions from the Wilson action at gauge coupling β=2.74 and lattice volume 243×Nt(Nt={24,8,6,4,2}) show that these string tensions agree with each other within error bars at any adopted value of Nt, which implies Abelian dominance. From measurements of non-Abelian, Abelian and monopole forces that arise from the corresponding spatial string tension, furthermore, we find the tendency that the monopole contribution to the spatial string tension can be almost as large as the non-Abelian and Abelian ones. The temperature dependence of the calculated non-Abelian and Abelian spatial string tensions allows us to conclude that the concept of dimensional reduction holds both for non-Abelian and Abelian sectors at temperatures higher than twice the critical temperature.

    PACS: 12.38.Aw, 11.10.Wx, 11.15.Ha, 14.80.Hv
    You currently do not have access to the full text article.

    Recommend the journal to your library today!