Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Holographic entanglement entropy in cutoff AdS

    https://doi.org/10.1142/S0217751X18502263Cited by:33 (Source: Crossref)

    We investigate the holographic entanglement entropy of deformed conformal field theories which are dual to a cutoff AdS space. The holographic entanglement entropy evaluated on a three-dimensional Poincaré AdS space with a finite cutoff can be reinterpreted as that of the dual field theory deformed by either a boost or TˉT deformation. For the boost case, we show that, although it trivially acts on the underlying theory, it nontrivially affects the entanglement entropy due to the length contraction. For a three-dimensional AdS, we show that the effect of the boost transformation can be reinterpreted as the rescaling of the energy scale, similar to the TˉT deformation. Under the boost and TˉT deformation, the c-function of the entanglement entropy exactly shows the features expected by the Zamolodchikov’s c-theorem. The deformed theory is always stationary at a UV fixed point and monotonically flows to another CFT in the IR fixed point. We also show that the holographic entanglement entropy in a Poincaré cutoff AdS space can reproduce the exact same result of the TˉT deformed theory on a two-dimensional sphere.

    PACS: 11.25.Tq
    You currently do not have access to the full text article.

    Recommend the journal to your library today!