World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Quaternionic wave function

    https://doi.org/10.1142/S0217751X19500015Cited by:13 (Source: Crossref)

    We argue that quaternions form a natural language for the description of quantum-mechanical wave functions with spin. We use the quaternionic spinor formalism which is in one-to-one correspondence with the usual spinor language. No unphysical degrees of freedom are admitted, in contrast to the majority of literature on quaternions. In this paper, we first build a Dirac Lagrangian in the quaternionic form, derive the Dirac equation and take the nonrelativistic limit to find the Schrödinger’s equation. We show that the quaternionic formalism is a natural choice to start with, while in the transition to the noninteracting nonrelativistic limit, the quaternionic description effectively reduces to the regular complex wave function language. We provide an easy-to-use grammar for switching between the ordinary spinor language and the description in terms of quaternions. As an illustration of the broader range of the formalism, we also derive the Maxwell’s equation from the quaternionic Lagrangian of Quantum Electrodynamics. In order to derive the equations of motion, we develop the variational calculus appropriate for this formalism.

    PACS: 11.10.-z, 03.50.-z, 11.30-j, 11.30.Cp, 11.30.Er, 03.50.De, 03.65.Ca, 03.65.-w, 03.50.-z
    You currently do not have access to the full text article.

    Recommend the journal to your library today!