World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Nonlinear vacuum electrodynamics and spontaneous breaking of Lorentz symmetry

    https://doi.org/10.1142/S0217751X20501742Cited by:6 (Source: Crossref)

    We study spontaneous breaking of Lorentz symmetry in nonlinear vacuum electrodynamics. Using a first-order formulation of the latter proposed by Plebański, we apply a Dirac constraint analysis and derive an effective Hamiltonian. We show that there exists a large class of potentials for which the effective Hamiltonian is bounded from below, while at the same time possessing local minima in which the field strength acquires a nonzero vacuum expectation value, thereby breaking Lorentz invariance spontaneously. These possible vacua can be classified in four classes, depending on the way Lorentz symmetry is broken. We show that the small field fluctuations around these vacua involve modes for which the dynamics can develop degeneracies, resulting in shock-wave-like and/or superluminal motion. Finally, we study the physical applicability of these models, and show how the Lorentz breaking vacua might in principle be detected by coupling the model to a suitable external current, or to gravity.

    PACS: 11.10.Lm, 11.30.Cp
    You currently do not have access to the full text article.

    Recommend the journal to your library today!