World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THEORETICAL EXPLANATIONS OF THE SPIN HAMILTONIAN PARAMETERS FOR Cu2+ ION IN LaSrAl1-xCuxO4 SOLID SOLUTION

    https://doi.org/10.1142/S0217979207044123Cited by:2 (Source: Crossref)

    It is of interest for layered oxides containing copper because they are related to high temperature superconductivity. Among them, LaSrAl1-xCuxO4 solid solution has received much attention due to its elastic and elasto-optic properties and application as promising substrate for high-Tc superconducting thin films. So many theoretical and experimental works have been done to understand the several characteristics of the LaSrAl1-xCuxO4 materials. In this paper, the electron paramagnetic resonance g factors g//, g and hyperfine structure constants A//, A for the tetragonal Cu2+ center in LaSrAl1-xCuxO4 solid solution are theoretically explained by the method of diagonalizing the full Hamiltonian matrix. The related crystal field parameters are calculated from the superposition model and the local structural parameters of the impurity Cu2+ occupying the host Al3+ site. The superposition model parameters used in this work are comparable with those for similar tetragonal (CuO6)10- clusters in the previous works. The calculated results are in reasonable agreement with the observed values. The results are discussed.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!