World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE PAINLEVÉ INTEGRABILITY AND N-SOLITONIC SOLUTION IN TERMS OF THE WRONSKIAN DETERMINANT FOR A VARIABLE-COEFFICIENT VARIANT BOUSSINESQ MODEL OF NONLINEAR WAVES

    https://doi.org/10.1142/S0217979209052674Cited by:2 (Source: Crossref)

    A variable-coefficient variant Boussinesq (VCVB) model describes the propagation of long waves in shallow water, the nonlinear lattice waves, the ion sound waves in plasmas, and the vibrations in a nonlinear string. With the help of symbolic computation, a VCVB model is investigated for its integrability through the Painlevé analysis. Then, by truncating the Painlevé expansion at the constant level term with two singular manifolds, the dependent variable transformations are obtained through which the VCVB model is bilinearized. Furthermore, the corresponding N-solitonic solutions with graphic analysis are given by the Hirota method and Wronskian technique. Additionally, a bilinear Bäcklund transformation is constructed for the VCVB model, by which a sample one-solitonic solution is presented.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!