World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PHYSICAL PROPERTIES OF CONTACT LENSES CHARACTERIZED BY SCANNING PROBE MICROSCOPY AND OPTOMAGNETIC FINGERPRINT

    https://doi.org/10.1142/S0217979210064460Cited by:7 (Source: Crossref)

    In this paper we present applied physics research results of gas-permeable contact lenses (CL) that are manufactured from fluorosilicone acrylate based material (Boston™ type). During contact lenses production the conformation states of polymers belonging to near surface layers of CL surface are changed. Since CL quality crucially depends on surface roughness and optical properties, the properties of surface molecules conformation state and their orientation come into perspective as important factors acting on the molecular level. Therefore, we investigated CL surface by phase contrast atomic force microscopy (PC-AFM), magnetic force microscopy (MFM), and optomagnetic fingerprint (OMF) technique and found out that surface quality and magnetic properties of contact lenses have influence on physical properties of light transmission and that these changes can be detected on the nanolevel of magnetism, as well as optomagnetism. These results carry important biophysically based implications for CL industry, biomedical application industry and applied optical science.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!