World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXCITON STATES IN A QUANTUM DOT WITH PARABOLIC CONFINEMENT

    https://doi.org/10.1142/S0217979211059279Cited by:4 (Source: Crossref)

    In this study the electronic eigenstructure of an exciton in a parabolic quantum dot (QD) has been calculated with a high accuracy by using Finite element method (FEM). We have converted the coordinates of electron–light-hole system to relative and center of mass coordinate, then placed the Spherical Harmonics into Schrödinger equation analytically and obtained the Schrödinger equation which depends only on the radial variable. Finally we used FEM with only radial variable in order to get the accurate numerical results. We also showed first 21 energy level spectra of exciton depending on confinement and Coulomb interaction parameters.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!