Electronic structure and elastic properties of single crystal of shape memory alloys TiNi(1-x)Cux: An ab initio study
Abstract
Nitinol as a superelastic shape memory alloy (SMA) has been the focus of physical-chemical studies in recent decades in respect to functionality of biocompatibility in the body. Superelastic properties of nitinol are the direct results of the electronic structure of this material while dealing with the ab initio behavior of microstructure. In the present work, the elastic properties and electronic structure of B2-phase binary TiNi(1-x)Cux (x = 0, 0.25 and 0.75) shape memory alloys are discussed aiming at understanding of the physical properties underlying superelastic behavior. The calculations have been performed with the program package WIEN2K, in the framework of first-principle, all-electron density functional theory (DFT) within the scheme of the generalized gradient approximation (GGA). The optimized lattice parameters and independent elastic constants are obtained for use in the calculation of the bulk and shear moduli, Young modulus, Poisson ratio and Zener anisotropy parameter. For different alloying fractions x, the tetragonal (C′) and trigonal (C44) shear constants are calculated and brittle/ductile behavior of these compounds is discussed. Finally, a qualitative discussion of dependence of elastic behavior of these compounds upon the electronic density of states (DOS) is presented.
You currently do not have access to the full text article. |
---|