World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analysis of electrical and magnetic properties of zinc oxide: A quantum mechanical study

    https://doi.org/10.1142/S0217979217501119Cited by:10 (Source: Crossref)

    Density functional theory (DFT) and generalized gradient approximation (GGA) have been employed to study origins of the intrinsic n-type electrical conductivity in the zinc oxide. Hubbard-like term has been introduced to provide a better description for the Zn 3d electrons. Two intrinsic point defects, namely oxygen vacancy and hydrogen impurity, were taken into consideration. Results on conductivity are analyzed using density of states patterns for different configurations of defects. Microstructure and local magnetic moments are studied as well. The obtained results clearly indicate that oxygen vacancy does not and cannot be responsible for the intrinsic n-type electrical conductivity whereas inserted hydrogen atoms tend to lose its only valence electron, which in turn becomes a free electron contributing towards the n-type conductivity.

    PACS: 71.15.Mb, 71.20.-b, 71.55.-i, 72.90.+y
    You currently do not have access to the full text article.

    Recommend the journal to your library today!