World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Long-range effective interactions in a lattice in the semiclassical approximation

    https://doi.org/10.1142/S0217979217501168Cited by:1 (Source: Crossref)

    We consider the semiclassical model of an extended tight-binding Hamiltonian comprising nearest- and next-to-nearest-neighbor interactions for a charged particle hopping in a lattice in the presence of a static arbitrary field and a rapidly oscillating uniform field. The application of Kapitza’s method yields a time-independent effective Hamiltonian with long-range hopping elements that depend on the external static and oscillating fields. Our calculations show that the semiclassical approximation is quite reliable as it yields, for a homogeneous oscillating field, the same effective hopping elements as those derived within the quantum approach. Besides, by controlling the oscillating field, we can engineer the interactions so as to suppress the otherwise dominant interactions (nearest neighbors) and leave as observable effects those due to the otherwise remanent interactions (distant neighbors).

    PACS: 42.50.Ct, 03.65.Sq, 72.10.Bg
    You currently do not have access to the full text article.

    Recommend the journal to your library today!