World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Eigensolutions and theoretic quantities under the nonrelativistic wave equation

    https://doi.org/10.1142/S0219633620500078Cited by:1 (Source: Crossref)

    The radial Schrödinger equation was solved with the combination of three important potentials with q as deformed parameter via the parametric Nikiforov–Uvarov method and the energy equation as well as the corresponding normalized radial wave function were obtained in close and compact form. The energy equation obtained was used to study eight molecules. The effect of the deformed parameter on energy eigenvalues was also studied numerically. The subset of the combined potential was also studied numerically and the results were found to be in agreement with the previous results. To extend the application of our work, the wave function obtained was used to calculate some theoretic quantities such as the Tsallis entropy, Rényi entropy and information energy. By putting the Tsallis index to 2, we deduced the information energy from Tsallis entropy. Finally, the effect of the deformed parameter and screening parameter, respectively, on the theoretic quantities were also studied.

    PACS: 03.65.Ge, 03.65−w, 02.30.Gp