Knot physics on entangled vortex-membranes: Classification, dynamics and effective theory
Abstract
In this paper, knot physics on entangled vortex-membranes are studied including classification, knot dynamics and effective theory. The physics objects in this paper are entangled vortex-membranes that are called composite knot-crystals. Under projection, a composite knot-crystal is reduced to coupled zero-lattices. In the continuum limit, the effective theories of coupled zero-lattices become quantum field theories. After considering the topological interplay between knots and different types of zero-lattices, gauge interactions emerge. Based on a particular composite knot-crystal (we call it a standard knot-crystal), the derived effective model becomes the Standard Model. As a result, the knot physics may provide an alternative interpretation on quantum field theory.
You currently do not have access to the full text article. |
---|