High-order breathers, lumps and hybrid solutions to the (2+1)-dimensional fifth-order KdV equation
Abstract
In this paper, the (2+1)-dimensional fifth-order KdV equation is analytically investigated. By using Hirota’s bilinear method combined with perturbation expansion, the high-order breather solutions of the fifth-order KdV equation are generated. Then, the high-order lump solutions are also derived from the soliton solutions by a long-wave limit method and some suitable parameter constraints. Furthermore, we extend this method to obtain hybrid solutions by taking long-wave limit for partial soliton solutions. Finally, the dynamic behavior of these solutions is presented in the figures.
You currently do not have access to the full text article. |
---|