World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Investigation of the photovoltaic performance of n-Zno/n-CdS/p-Cu2ZnSnS4 solar cell

    https://doi.org/10.1142/S021797922040010XCited by:0 (Source: Crossref)
    This article is part of the issue:

    The semiconducting thin film solar cell based on Cu2ZnSnS4 (CZTS) materials is considered as a promising candidate for very large-scale application due to high absorption coefficient and low cost. In this study, the performances of n-ZnO/n-CdS/p-CZTS solar cells were numerically simulated using the AFORS-HET software. The influences of double-graded bandgap and thickness of CZTS layer on the performances of the solar cell were investigated. The calculated results show that double-graded bandgap structure can greatly optimize the conversion efficiency of CZTS thin film solar cell. The optimal dual gradient structure is 1.4 eV-1.3 eV-1.5 eV, the optimal thickness ratio is 11:1, and the conversion efficiency could be 26.63%. The results of this study can serve as a guide in fabricating CZTS solar cell.

    PACS: 71.20.Tx, 78.66.-w
    You currently do not have access to the full text article.

    Recommend the journal to your library today!