The hydrodynamic FORCE of fluid–structure interaction interface in lattice Boltzmann simulations
Abstract
The hydrodynamic force (HF) evaluation plays a critical role in the numerical simulation of fluid–structure interaction (FSI). By directly using the distribution functions of lattice Boltzmann equation (LBE) to evaluate the HF, the momentum exchange algorithm (MEA) has excellent features. Particularly, it is independent of boundary geometry and avoids integration on the complex boundary. In this work, the HF of lattice Boltzmann simulation (LBS) is evaluated by using the MEA. We conduct a comparative study to evaluate two lattice Boltzmann models for constructing the flow solvers, including the LBE with single-relaxation-time (SRT) and multiple-relaxation-time (MRT) collision operators. The second-order boundary condition schemes are used to address the curve boundary. The test case of flow past a cylinder asymmetrically placed in a channel is simulated. Comparing the numerical solutions of Lattice Boltzmann method (LBM) with those of Navier–Stokes equations in the literature, the influence of collision relaxation model, boundary conditions and lattice resolution is investigated. The results demonstrate that the MRT-LB improves the numerical stability of the LBM and the accuracy of HF.
You currently do not have access to the full text article. |
---|