World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Diblock copolymer architecture and complex viscosity

    https://doi.org/10.1142/S0217979220401104Cited by:9 (Source: Crossref)
    This article is part of the issue:

    General rigid bead-rod theory [O. Hassager, J. Chem. Phys. 60, 4001 (1974)] explains polymer viscoelasticity from macromolecular orientation. By means of general rigid bead-rod theory, we relate the complex viscosity of polymeric liquids to the architecture of axisymmetric macromolecules. In this paper, we explore the complex viscosities of different axisymmetric diblock copolymer configurations. When nondimensionalized with the zero-shear viscosity, the diblock copolymer complex viscosity depends on the dimensionless frequency and the sole dimensionless architectural parameter, the macromolecular lopsidedness. In this paper, through this way, we thus compare the dimensionless relaxation time of different diblock macromolecular chains. We explore the effects of linear density, macromolecular length, and bead number ratio.

    PACS: 83.80.Uv
    You currently do not have access to the full text article.

    Recommend the journal to your library today!