A DFT investigation of 45 wurtzite (B4)-type compounds: Structural, electronic, linear and nonlinear optical properties
Abstract
This work is a part of a series of investigations devoted to the study of the relationship between nonlinear optical properties and pseudosymmetric features of some groups of crystal compounds [A. P. Gazhulina and M. O. Marychev, Cryst. Struct. Theory Appl. 2, 106 (2013). doi.org/10.4236/csta.2013.23015; A. P. Gazhulina and M. O. Marychev, J. Alloys Compd. 623, 413 (2015). doi.org/10.1016/j.jallcom.2014.11.028; A. P. Gazhulina and M. O. Marychev, J. Solid State Chem. 239, 170 (2016). doi.org/10.1016/j.jssc.2016.04.034]. Crystals of the wurtzite (B4) structural type (45 crystals) have been considered. In the framework of density functional theory, the structural, electronic, linear and nonlinear optical properties were investigated using the full-potential linearized augment plane wave (FP-LAPW) method. The obtained results are compared to available experimental and computational data. Diagrams “Second-order Nonlinear Susceptibility–Degree of Pseudoinversion” at 1.064 and 0.634 μm wavelengths were constructed.
You currently do not have access to the full text article. |
---|