World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Delta moves and Kauffman polynomials of virtual knots

    https://doi.org/10.1142/S0218216514500539Cited by:1 (Source: Crossref)

    In 1990, Okada showed that the second coefficients of the Conway polynomials of two knots differ by 1 if the two knots are related by a single Δ-move. We extend the Okada's result for virtual knots by using a Vassiliev invariant v2 of virtual knots of degree 2 which is induced from the Kauffman polynomial of a virtual knot. We show that v2(K1) - v2(K2) = ±48, if K2 is a virtual knot obtained from a virtual knot K1 by applying a Δ-move. From this we have a lower bound for the number of Δ-moves if two virtual knots K1 and K2 are related by a sequence of Δ-moves.

    AMSC: 57M25, 57M27