World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A transportation network evolution model based on link prediction

    https://doi.org/10.1142/S0217979221503161Cited by:8 (Source: Crossref)

    An effective and reliable evolution model can provide strong support for the planning and design of transportation networks. As a network evolution mechanism, link prediction plays an important role in the expansion of transportation networks. Most of the previous algorithms mainly took node degree or common neighbors into account in calculating link probability between two nodes, and the structure characteristics which can enhance global network efficiency are rarely considered. To address these issues, we propose a new evolution mechanism of transportation networks from the aspect of link prediction. Specifically, node degree, distance, path, expected network structure, relevance, population and GDP are comprehensively considered according to the characteristics and requirements of the transportation networks. Numerical experiments are done with China’s high-speed railway network, China’s highway network and China’s inland civil aviation network. We compare receiver operating characteristic curve and network efficiency in different models and explore the degree and hubs of networks generated by the proposed model. The results show that the proposed model has better prediction performance and can effectively optimize the network structure compared with other baseline link prediction methods.

    PACS: 89.40.−a, 89.75.−k, 89.75.Hc, 89.90.+n
    You currently do not have access to the full text article.

    Recommend the journal to your library today!