World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Transient electromagnetohydrodynamic Nanofluid flow traveling through a moving Riga plate subject to radiation and heat absorption

    https://doi.org/10.1142/S0217979223501680Cited by:15 (Source: Crossref)

    There are several regularly reported applications for the dispersion of nanoparticles in a conventional fluid along a vertical wall in clinical medicine, architecture and agriculture fields. On the other hand, it still has not been reported the effect of electromagnetohydrodynamic convective flow of nanofluid through a radiating, moving Riga plate with heat absorption. As a result, this paper examines a water-based nanofluid comprising copper and aluminum oxide along a moving Riga plate, taking into cognizance λ=0 (stationary Riga plate) λ=±1 (moving Riga plate). The Laplace transform technique is used to solve the ODEs obtained after employing the similarity variables on the governing equations. The effect of various variables on the shear stress coefficient, Nusselt number, velocity and temperature distribution is explored and graphically shown. Driven by the electromagnetic force effect, the increased modified Hartmann number and radiative impact increase copper nanofluid over aluminum oxide nanofluid on the moving plate. Simultaneously, heat absorption favors a modest decrease in aluminum oxide nanofluid’s thermal and velocity fields over copper nanofluid.

    PACS: 47.65.−d, 52.65.Kj, 44.40.+a, 44.90.+c
    You currently do not have access to the full text article.

    Recommend the journal to your library today!