World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A numerical study on the superheater tubes bundle of a 660 MW coal-fired supercritical boiler

    https://doi.org/10.1142/S0217979224502266Cited by:2 (Source: Crossref)

    Coal-fired thermal power plants are currently converting their technology to supercritical and ultra-supercritical in order to meet the world’s energy demands. An important component in this technology is the superheater of the boiler, which operates at higher temperatures and above the critical pressures. For the design and reliable operation of a superheater tube bundle, thermal and structural analyses are crucial. This study focuses on the superheater tubes bundle of a 660MW coal-fired supercritical boiler. The superheater model is simulated to investigate the thermal characteristics such as temperature distribution, total heat flux and directional heat flux and structural parameters such as von Mises stresses, equivalent strains and total deformations. Different materials such as martensitic steel, austenitic steel and nickel–titanium are compared based on thermal and structural analysis. It is claimed that thermal performances of martensitic steel are more impressive as compared to superheater materials. The lower strain appeared for austenitic steel as compared to martensitic steel.

    PACS: 44.10.+i, 66.30.Dn
    You currently do not have access to the full text article.

    Recommend the journal to your library today!