Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Li–Yorke Chaos in Hybrid Systems on a Time Scale

    https://doi.org/10.1142/S0218127415400246Cited by:6 (Source: Crossref)

    By using the reduction technique to impulsive differential equations [Akhmet & Turan, 2006], we rigorously prove the presence of chaos in dynamic equations on time scales (DETS). The results of the present study are based on the Li–Yorke definition of chaos. This is the first time in the literature that chaos is obtained for DETS. An illustrative example is presented by means of a Duffing equation on a time scale.