World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NUMERICAL SIMULATION OF MHD FLOWS WITH NON-EQUILIBRIUM CHEMICAL REACTIONS ON UNSTRUCTURED MESHES

    https://doi.org/10.1142/S0217984909018242Cited by:0 (Source: Crossref)

    Two dimensional hypersonic magnetohydrodynamics(MHD) flows with the chemical non-equilibrium effects are numerically simulated using upwind splitting scheme based on unstructured meshes. The governing equations are 2D MHD equations with the chemical components, where 5 species and 17 chemical reactions are considered. The AUSM scheme is implemented in the spatial discretization for the MHD equations, and an explicit 5-stage Runge-Kutta scheme is used for time integration. A loosely coupled approach is used to communicate between the MHD equations and the chemical reaction model. The computational model is a 2D blunt body, around which a dipole magnetic field is located. With hypersonic incoming flows, four different cases are numerically simulated to analyze the effects caused by the magnetic field and/or non-equilibrium chemical reactions. Numerical results are obtained and compared well with available data.