World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Applications of Fluid MechanicsNo Access

CALCULATION OF THE UNSTEADY AIRLOADS ON WIND TURBINE BLADES UNDER YAWED FLOW

    https://doi.org/10.1142/S0217984909018734Cited by:2 (Source: Crossref)

    A dynamic stall model is coupled with the blade element momentum theory to calculate the cyclic variation of the aerodynamic characteristics of the wind turbine in yawed flow. In the dynamic stall model, unsteady effects under attached flow conditions are simulated by the superposition of indicial aerodynamic responses. The movement of the unsteady flow separation point is related to the static separation based on the Kirchhoff flow model via a deficiency function, in which the unsteady boundary layer response and the leading edge pressure response are taken into consideration. The induced vortex force and the associated pitching moment are represented empirically in a time-dependent manner during dynamic stall. The required input of the inflow velocity and incidence to the dynamic stall model is calculated using the improved blade element momentum theory. The calculated results are compared well with the NREL UAE Phase VI experimental data. For completeness, possible factors causing the difference between calculated and experimental results are analyzed and discussed in detail in this paper.