World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NUMERICAL INVESTIGATION ON THE FREE VIBRATION OF CARBON NANOPEAPODS AS VARIABLE FREQUENCY BEAM RESONATORS

    https://doi.org/10.1142/S0217984913501479Cited by:1 (Source: Crossref)

    This study aims at investigation of the resonance frequencies of carbon nanopeapods constructed by a single wall carbon nanotube and encapsulated buckyball molecules (C60). A nanopeapod can be used as a nanoscale variable frequency beam resonator according to the number and positions of the encapsulated fullerenes. Using the molecular structural mechanics method the covalence bonds are simulated by equivalent beam elements and the van der Waal interactions between the buckyballs and nanotube are modeled as linear springs. Also, an equivalent beam model is proposed for the nanopeapod with sectional properties which are obtained by the molecular structural mechanics model. The beam-like modes of free vibrations are obtained using both models and the effect of position and number of buckyballs on the resonance frequencies are investigated.