World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Entanglement for excited states of ultracold bosonic atoms in one-dimensional harmonic traps with contact interaction

    https://doi.org/10.1142/S0217984915501894Cited by:5 (Source: Crossref)

    We have investigated quantum entanglement for two interacting ultracold bosonic atoms in one-dimensional harmonic traps. The effective potential is modeled by delta interaction. For this two-atom system, we have investigated quantum entanglement properties, such as von Neumann entropy and linear entropy for its ground state and excited states. Using a computational scheme that is different from previously employed, a total of the lowest 16 states are studied. Here we show the dependencies of entanglement properties under various interacting strengths. Comparisons for the ground state entanglement are made with earlier results in the literature. New results for the other 15 excited states are reported here.

    Remember to check out the Most Cited Articles!

    Boost your collection with these New Books in Condensed Matter Physics today!