Artificial bee colony algorithm with dynamic multi-population
Abstract
To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.