World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Uncovering the fuzzy community structure accurately based on steepest descent projection

    https://doi.org/10.1142/S0217984917502499Cited by:9 (Source: Crossref)

    Uncovering the community structure in complex network is a hot research point in recent years. How to identify the community structure accurately in complex network is still an open question under research. There are lots of methods based on topological information, which have some good performances at the expense of longer runtimes. In this paper, we propose a new fuzzy algorithm which follows the line of fuzzy c-means algorithm. A steepest descent framework with projection by optimizing the quality function is presented under the generalized framework. The results of experiments on both real-world networks and synthetic networks show that the proposed method achieves the highest efficiency and is easy for detecting fuzzy community structure in large-scale complex networks.