World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Dielectric properties of (SWCNTs)xx GdBa2CuO7δ7δ superconductor nanocomposites

    https://doi.org/10.1142/S0217984917502906Cited by:2 (Source: Crossref)

    Gd-123 superconducting phase was prepared by solid-state reaction technique. Single-walled carbon nanotubes (SWCNTs) were added in Gd-123 superconducting matrix with different concentrations during the final sintering process to obtain (SWCNTs)xx GdBa2Cu3O7δ7δ (x = 0.0–0.1 wt.%) nanoparticles–superconductor composite. The influence of SWCNTs addition on the phase formation, structural, morphological, superconducting and dielectric properties of Gd-123 phase was investigated. It was found that SWCNTs addition enhance the phase formation and does not change the crystal structure of the host Gd-123 superconducting phase. The superconducting properties of Gd-123 samples were improved after the addition of SWCNTs up to x = 0.06 wt.% due to the enhancement in intergrain connectivity by healing up of micro-cracks and reduction of defects, while these properties were retarded with further increase in x. The dielectric response of (SWCNTs)xx Gd-123 superconducting phase with x = 0.0, 0.01, 0.04, 0.05, 0.06 and 0.1 wt.% was measured from 100 KHz to 5 MHz at 77 K. The results reveal that for both real (𝜀) and imaginary (𝜀) parts of dielectric constant, the frequency of dispersion increased by increasing SWCNTs amount up to 0.06 wt.%, then this frequency shifted to lower values for x> 0.06 wt.%. The results were discussed according to the presence and interference of both interfacial and dipolar polarizations.