Dielectric properties of (SWCNTs)xx GdBa2CuO7−δ7−δ superconductor nanocomposites
Abstract
Gd-123 superconducting phase was prepared by solid-state reaction technique. Single-walled carbon nanotubes (SWCNTs) were added in Gd-123 superconducting matrix with different concentrations during the final sintering process to obtain (SWCNTs)xx GdBa2Cu3O7−δ7−δ (x = 0.0–0.1 wt.%) nanoparticles–superconductor composite. The influence of SWCNTs addition on the phase formation, structural, morphological, superconducting and dielectric properties of Gd-123 phase was investigated. It was found that SWCNTs addition enhance the phase formation and does not change the crystal structure of the host Gd-123 superconducting phase. The superconducting properties of Gd-123 samples were improved after the addition of SWCNTs up to x = 0.06 wt.% due to the enhancement in intergrain connectivity by healing up of micro-cracks and reduction of defects, while these properties were retarded with further increase in x. The dielectric response of (SWCNTs)xx Gd-123 superconducting phase with x = 0.0, 0.01, 0.04, 0.05, 0.06 and 0.1 wt.% was measured from 100 KHz to 5 MHz at 77 K. The results reveal that for both real (𝜀′) and imaginary (𝜀″) parts of dielectric constant, the frequency of dispersion increased by increasing SWCNTs amount up to 0.06 wt.%, then this frequency shifted to lower values for x> 0.06 wt.%. The results were discussed according to the presence and interference of both interfacial and dipolar polarizations.