Parametric excitation of optical phonons in weakly polar narrow band gap magnetized semiconductor plasmas
Abstract
An analytical treatment based on the hydrodynamic model of plasmas is developed to study parametric amplification and oscillation of optical phonon modes in weakly polar narrow direct-gap magnetized semiconductor plasmas. Second-order optical susceptibility arising due to nonlinear polarization and the basic operational characteristics of the parametric device, viz. threshold nature, power gain mechanisms and conversion efficiency, are obtained. The effects of doping, magnetic field and excitation intensity, on the above operational characteristics have been studied in detail. Numerical estimates are made for an n-InSb crystal at 5 K duly irradiated by a pulsed 10.6 μm CO2 laser. The analysis suggests the possibility of observing super-fluorescent parametric emission and oscillation in moderately doped n-InSb crystal under off-resonant nanosecond pulsed not-too-high power laser irradiation, the crystal being immersed in a large magnetic field.