World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A generalized integrable hierarchy related to the relativistic Toda lattice: Hamiltonian structure, Darboux transformation, soliton solution and conservation law

    https://doi.org/10.1142/S021798492150545XCited by:2 (Source: Crossref)

    Starting from a more generalized discrete 2×2 matrix spectral problem and using the Tu scheme, some integrable lattice hierarchies (ILHs) are presented which include the well-known relativistic Toda lattice hierarchy and some new three-field ILHs. Taking one of the hierarchies as example, the corresponding Hamiltonian structure is constructed and the Liouville integrability is illustrated. For the first nontrivial lattice equation in the hierarchy, the N-fold Darboux transformation (DT) of the system is established basing on its Lax pair. By using the obtained DT, we generate the discrete N-soliton solutions in determinant form and plot their figures with proper parameters, from which we get some interesting soliton structures such as kink and anti-bell-shaped two-soliton, kink and anti-kink-shaped two-soliton and so on. These soliton solutions are much stable during the propagation, the solitary waves pass through without change of shapes, amplitudes, wave-lengths and directions. Finally, we derive infinitely many conservation laws of the system and give the corresponding conserved density and associated flux formulaically.