World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THEORY AND EXPERIMENT OF A FIRST-ORDER CHAOTIC DELAY DYNAMICAL SYSTEM

    https://doi.org/10.1142/S0218127413300206Cited by:31 (Source: Crossref)

    We report the theory and experiment of a new time-delayed chaotic (hyperchaotic) system with a single scalar time delay and a nonlinearity described by a closed form mathematical function. Detailed stability and bifurcation analyses establish that with the suitable delay and system parameters, the system shows a stable limit cycle through a supercritical Hopf bifurcation. Numerical simulations exemplify that the system depicts mono-scroll and double-scroll chaos and hyperchaos for a range of delay and other system parameters. Nonlinear behavior of the system is characterized by Lyapunov exponents and Kaplan–Yorke dimension. It is established that, for some suitably chosen system parameters, the system shows hyperchaos even for a small or moderate time delay. Finally, the system is implemented in an analogue electronic circuit using off-the-shelf circuit elements. It is shown that the behavior of the time delay chaotic electronic circuit qualitatively agrees well with our analytical and numerical results.

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos