World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0217984924504694Cited by:7 (Source: Crossref)

In this paper, we primarily focus on the nonlinear paraxial wave equation in Kerr media, a generalization of the nonlinear Schrödinger equation utilized to characterize the dynamics of optical beam propagation. By using three potent analytical methods, namely, the Sine-Gordon expansion method, the functional variable method, and the Bernoulli (G/G)-expansion method, numerous novel soliton solutions are derived. These solutions, comprising hyperbolic, trigonometric and exponential functions, represent significant additions to the field of optics. Furthermore, we elucidate the physical characteristics of these novel optical soliton solutions by presenting a series of three-dimensional (3D) and two-dimensional (2D) graphs with appropriate parameter values.

Remember to check out the Most Cited Articles!

Boost your collection with these New Books in Condensed Matter Physics today!