World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Fusion of Multiple Classifiers; Edited by F. Roli and J. KittlerNo Access

BIAS-VARIANCE CONTROL VIA HARD POINTS SHAVING

    https://doi.org/10.1142/S0218001404003460Cited by:13 (Source: Crossref)

    In this paper, we propose a regularization technique for AdaBoost. The method implements a bias-variance control strategy in order to avoid overfitting in classification tasks on noisy data. The method is based on a notion of easy and hard training patterns as emerging from analysis of the dynamical evolutions of AdaBoost weights. The procedure consists in sorting the training data points by a hardness measure, and in progressively eliminating the hardest, stopping at an automatically selected threshold. Effectiveness of the method is tested and discussed on synthetic as well as real data.