World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROJECT CellNet: EVOLVING AN AUTONOMOUS PATTERN RECOGNIZER

    https://doi.org/10.1142/S0218001404003587Cited by:6 (Source: Crossref)

    We describe the desire for a black box approach to pattern classification: a generic Autonomous Pattern Recognizer, which is capable of self-adapting to specific alphabets without human intervention. The CellNet software system is introduced, an evolutionary system that optimizes a set of pattern-recognizing agents relative to a provided set of features and a given pattern database. CellNet utilizes a new genetic operator designed to facilitate a canalization of development: Merger. CellNet utilizes our own set of arbitrarily chosen features, and is applied to the CEDAR Database of handwritten Latin characters, as well as to a database of handwritten Indian digits provided by CENPARMI. CellNet's cooperative co-evolutionary approach shows significant improvement over a more standard Genetic Algorithm, both in terms of efficiency and in nearly eliminating over-fitting (to the training set). Additionally, the binary classifiers autonomously evolved by CellNet return validation accuracies approaching 98% for both Latin and Indian digits, with no global changes to the system between the two trials.