World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Personalization Techniques and Recommender Systems; Edited by G. Uchyigit and M. Y. MaNo Access

IDENTIFYING USER AND GROUP INFORMATION FROM COLLABORATIVE FILTERING DATASETS

    https://doi.org/10.1142/S0218001407005405Cited by:1 (Source: Crossref)

    This paper considers the information that can be captured about users and groups from a collaborative filtering dataset. The aims of the paper are to create a user model and to use this model to explain the performance of a collaborative filtering approach. A number of user and group features are defined and the performance of a collaborative filtering system in producing recommendations for users with different feature values is tested. Graph-based representations of the collaborative filtering space are presented and these are used to define some of the user and group features as well as being used in a recommendation task.