World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Personalization Techniques and Recommender Systems; Edited by G. Uchyigit and M. Y. MaNo Access

A NEW FEATURE SELECTION METHOD FOR TEXT CLASSIFICATION

    https://doi.org/10.1142/S0218001407005466Cited by:9 (Source: Crossref)

    Text classification is the problem of classifying a set of documents into a pre-defined set of classes. A major problem with text classification problems is the high dimensionality of the feature space. Only a small subset of these words are feature words which can be used in determining a document's class, while the rest adds noise and can make the results unreliable and significantly increase computational time. A common approach in dealing with this problem is feature selection where the number of words in the feature space are significantly reduced.

    In this paper we present the experiments of a comparative study of feature selection methods used for text classification. Ten feature selection methods were evaluated in this study including the new feature selection method, called the GU metric. The other feature selection methods evaluated in this study are: Chi-Squared (χ2) statistic, NGL coefficient, GSS coefficient, Mutual Information, Information Gain, Odds Ratio, Term Frequency, Fisher Criterion, BSS/WSS coefficient. The experimental evaluations show that the GU metric obtained the best F1 and F2 scores. The experiments were performed on the 20 Newsgroups data sets with the Naive Bayesian Probabilistic Classifier.